NATURAL SELECTION AND RANDOM GENETIC DRIFT IN PHENOTYPIC EVOLUTION
نویسندگان
چکیده
منابع مشابه
Testing natural selection vs. genetic drift in phenotypic evolution using quantitative trait locus data.
Evolutionary biologists have long sought a way to determine whether a phenotypic difference between two taxa was caused by natural selection or random genetic drift. Here I argue that data from quantitative trait locus (QTL) analyses can be used to test the null hypothesis of neutral phenotypic evolution. I propose a sign test that compares the observed number of plus and minus alleles in the "...
متن کاملOn Theoretical Models of Gene Expression Evolution with Random Genetic Drift and Natural Selection
BACKGROUND The relative contributions of natural selection and random genetic drift are a major source of debate in the study of gene expression evolution, which is hypothesized to serve as a bridge from molecular to phenotypic evolution. It has been suggested that the conflict between views is caused by the lack of a definite model of the neutral hypothesis, which can describe the long-run beh...
متن کاملAre Random Drift and Natural Selection Conceptually Distinct?
The latter half of the twentieth century has been marked by debates in evolutionary biology over the relative significance of natural selection and random drift: the so-called “neutralist/selectionist” debates. Yet John Beatty has argued that it is difficult, if not impossible, to distinguish the concept of random drift from the concept of natural selection, a claim that has been accepted by ma...
متن کاملHow Do Natural Selection and Random Drift Interact?
One controversy about the existence of so called evolutionary forces such as natural selection and random genetic drift concerns the sense in which such “forces” can be said to interact. In this paper I explain how natural selection and random drift can interact. In particular, I show how population-level probabilities can be derived from individual-level probabilities, and explain the sense in...
متن کاملMalaria life cycle intensifies both natural selection and random genetic drift.
Analysis of genome sequences of 159 isolates of Plasmodium falciparum from Senegal yields an extraordinarily high proportion (26.85%) of protein-coding genes with the ratio of nonsynonymous to synonymous polymorphism greater than one. This proportion is much greater than observed in other organisms. Also unusual is that the site-frequency spectra of synonymous and nonsynonymous polymorphisms ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Evolution
سال: 1976
ISSN: 0014-3820
DOI: 10.1111/j.1558-5646.1976.tb00911.x